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Phase separation and shape deformation of two-phase membranes
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Within a coupled-field Ginzburg-Landau model we study analytically phase separation and accompanying
shape deformation on a two-phase elastic membrane in simple geometries such as cylinders, spheres, and tori.
Using an exact periodic domain wall solution we solve for the shape and phase separating field, and estimate
the degree of deformation of the membrane. The results are pertinent to preferential phase separation in regions
of differing curvature on a variety of vesicles.

PACS number~s!: 87.16.2b, 64.60.Cn, 11.10.Lm
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Amphiphilic molecules assemble in aqueous media
form bilayers, which close to form vesicles at low conce
trations. Bilayers and vesicles serve as models for m
branes and cells for studying simple physical properties s
as shape deformations, elasticity and transport. They s
an amazing variety of shapes, which have been describe
treating the membrane as a homogeneous elastic sheet
area and volume constraints@1,2#. However, recent experi
mental observations have recognized that internal degree
freedom can crucially influence the shapes. An exampl
the transition from a normal biconcave shape ofdiscocytesto
a crenated shape ofechinocytesof a human red blood cell
Such transformations can be induced by an asymmetric
sorption of certain drugs, i.e., a local asymmetry in the co
position plays an important role in this crenated shape@3#.

As molecules are free to move in the plane of the me
brane, lateral phase separation is constantly observed in
membranes. A single component membrane under ce
conditions can exhibit regions rich in tilted and non-tilte
phases, respectively, while a two-component membrane
exhibit phase separation of both different components
tilted vs. non-tilted phases@4#. Phase separation plays a ce
tral role in the stabilization of vesicles and in the fission
small vesicles after budding@5,6#. Although experimental
studies that clearly relate phase separation to local shap
formation@4# are scarce, a number of phenomenological a
numerical investigations have shown that a coupling of
local curvature to the local composition of amphiphiles c
result in shape deformation@7–9# and budding@10#.

The numerical studies have considered mainly a gen
fluctuating vesicle and therefore the central role of the c
pling between the phase separation and accompanying s
deformation process has been difficult to decipher. Our w
is thus motivated by a desire to study, by analytical me
where possible, phase separation on the simplest of ge
etries such as cylinders, spheres and tori. While microtub
are abundant in biology, deformable spherical and toro
vesicles have also been observed@11#. We seek to provide a
systematic formal description of the equilibrium solutio
Our aim is to gain insight into the role played by curvatu
and to extract the salient ingredients that affect phase s
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ration and shape changes. We estimate the degree of d
mation from the coupling strength between the composit
and curvature fields and the elastic rigidity.

We represent a membrane as a surface embedded in
dimensions parameterized byq[$q1 ,q2%, for its thickness is
usually several orders of magnitude smaller than its size.
approach is to study phase separation on a subset of sur
~orthogonal curvilinear manifolds@12#! which have either an
axis of translation or rotation. For this special class of s
faces we have recently derived some simplifying analyti
results regarding phase separation onrigid curved surfaces
@13#. Here we apply the analysis to deformable surfaces.

The total free energy of the membrane isF5F11F2
1F3, with the bending elastic energy@2#:

F15E dA Fk2 ~h2h0!2G , ~1!

wheredA5Agd2q is the area element withAg the determi-
nant of the metric tensorgi j , h is the mean curvature, andh0
is the spontaneous mean curvature—the preferred curva
of the relaxed vesicle. The mean curvature ish5h(q1 ,q2)
5h11h2, whereh1 andh2 are the principal curvatures. Fo
an arbitrary surface embedded in three dimensions, ifq1 and
q2 are orthogonal coordinates, the metric tensor hasgi j 50
for iÞ j andAg5Ag11g22.

We treat phase separation within the usual Ginzbu
Landau free energy framework:

F25E dA Fj2

2
u¹fu21V~f!G , ~2!

wheref is either the relative concentration of the two pha
componentsA and B of the membrane:f5(A2B)/(A
1B), or the concentration of a diffusing external chemic
as in the case ofechinocytosisof red blood cells@3,14#. Here
j is the characteristic length, which determines interfa
width; V(f) is a double-well potential, whose details are n
important@15#. We use a simplef4 potential to describe the
kinetics of phase separation:V(f)5(a/4)f42(b/2)f2

(a,b.0).
We use the bilinear form of coupling between the pha

density and local curvature@14#, an interaction energy found
on phenomenological grounds:
R57 ©2000 The American Physical Society
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F35E dA Lfh, ~3!

whereL is the strength of the coupling.
More realistic considerations should take into acco

area and volume constraints for vesicle membranes
change in area would increase the surface energy an
change in volume would increase the osmotic press
Hence an additional term

F45lA1PV5E dA S l1P
ur u
3 D , ~4!

wherel is the surface tension andP the osmotic pressure
should be included in the free energyF. The second term in
the expression utilizes the divergence theorem in 3D. T
surface tensionl is a constant and does not enter the var
tional calculations. The relation between the local radiusur u
and the mean curvatureh can be highly complicated depend
ing on the geometry, which will render the free energy t
intractable for our purposes. Therefore, we consider onlP
50 hereafter.

At equilibrium, the Euler-Lagrange~EL! equations for
f and h fields aredF/df50 anddF/dh50, respectively.
The EL equations are nonlinear and usually do not h
an exact closed-form solution. In order to obtain analyti
results, we consider special symmetries to reduce the p
lem to a quasi-one dimensional one. Ifq1 is the axis of
symmetry,u¹fu5udf/dq2u. We then define a new variabl
t1 as dt1[Ag22/g11 dq2. With this variable, the Laplace
Beltrami operator ¹LB

2 f5(1/Ag)(]/]xi)(gi j Ag]/]xj )f
5(1/g11)(d

2/dt1
2)f is simplified.

The equilibrium condition, derived from the EL equatio
for h is

h5h02
L

k
f, ~5!

i.e., at equilibrium the local mean curvature of the membra
is linearly proportional to the localf. This linear relation-
ship explains why phase separated regions have local cu
ture (L/k)f, a result that appeared in the numerical study
Ref. @9#. Thus, we can eliminateh from the free energy. It
follows that the EL equation for the free energy with resp
to f becomes

Ve8~f!2
d2

dt1
2 f50. ~6!

HereVe is the new effective potential:

Ve[g11Fa4 f42
1

2 S b1
L2

k Df21Lh0fG , ~7!

which depends only onf. The coefficient of thef2 term is
renormalized and the effective potential becomes an as
metric double-well due to the linear coupling.

Twice integrating Eq.~6! we obtain a general periodi
domain-wall lattice solution:
t
A
a

e.

e
-

e
l
b-

e

a-
f

t

-

f~t!5d1
c2d

12
b2c

b2d
sn2S t2t0

z
,kD ,

~8!

k[A~b2c!~a2d!

~a2c!~b2d!
,

where dt[dt1Ag115Ag22dq2 is the arc length variable
a,b,c and d are real roots ofVe2V050, i.e. Ve2V0
5g11(a/4)(f2a)(f2b)(f2c)(f2d) with a.b>f.c
.d; V0 , t0 are two constants of integration,z
[jA4/aA2/(a2c)(b2d) is the rescaled characterist
length scale,k is the modulus of the Jacobian elliptic func
tion sn(t,k). The shape of the periodic solution depends
the modulusk, which in turn depends on all the paramete
of the model and the initial energyV0. The value ofk ranges
between 0 and 1. Fork50, the Jacobian elliptic function
reduces to a sinusoidal function. Fork51, sn(t,k) changes
to a kink solution, tanh(t), which is no longer periodic and
thus is only allowed on an open geometry. For a closed
ometry, a periodic solution is required and the number
periods for a fixed perimeterL depends on the value ofk
@16#: the periods allowed should satisfyL/z52mK where
K(k) is the complete elliptic integral of the first kind andm
is an arbitrary integer. The initial energyV0 is related to the
mean concentration and the distribution of the two phas
With the linear relationship betweenf and h, Eq. ~5!, we
also obtain the expression for the mean curvatureh(t)5h0
2(L/k)f(t).

Transformingt to space coordinateq2 and exploiting the
fact thatq1 is the axis of symmetry, we obtainf(q1 ,q2) and
h(q1 ,q2). Fromh(q1 ,q2), we can then use the relationsh
betweenh andr, to obtainr (q1 ,q2), the shape in real spac
coordinates.

For illustration purposes, we now carry out this formul
tion on a cylinder with rotational symmetryr 5r (z). The
metric tensor hasguu5r 2, gzz511r 82, andguz50.

With u as the axis of symmetry, we define the new va
ablet1 as

dt15dzAgzz

guu
5dzA11r 82

r 2
.

The free energy for such a cylinder is then

F5E dt1duFj2

2
ft1

2 1Ve~f!G , ~9!

in which Ve(f) is the same as Eq.~7!. Applying the EL
equation forh, we obtain the same linear relation betweenh
andf as in Eq.~5! in terms oft1. Replacingh in the free
energy,F becomes a function off only and its EL equation
with respect tof is

dF

df~t1!
5j2ft1t1

2r 2Faf32S b1
L2

k Df1Lh0G50.

This equation yields the same solution forf as Eq.~8! as a
function of the arc variablet:
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dt[rdt1

5dzA11r 82, ~10!

and hence the solution ofh(t) based on the linear relation
ship betweenf andh.

In order to convert thef andh results to phase distribu
tion and deformation on a cylinder, i.e., to obtainf(z,u) and
r (z,u), we need to change the variablet back to the original
variablez as follows. We replacer 5r (z) by r(t), such that

rt5r z /A11r z
2, rtt5r zz/~11r z

2!2.

The mean curvatureh(z) in terms ofr(t) is

h~t!51/r1rtt /A12rt
2. ~11!

A numerical integration of this equation providesr(t) and
thusz5*dtA12rt

2, which in turn givesr (z)5r(t(z)), the
deformation along thez axis of a cylinder.

Figure 1~a! shows a typical plot for the equilibriumf, h
andr as a function ofz, obtained with the following param
eters:a54, b52, h055, j50.2, k50.02, andL50.03.
Figure 1~b! is the correspondingaxially deformed cylinder,
whose shades of gray correspond to the amplitude of
order-parameter field. Applying the same formulation to
cylinder with an axial symmetryr 5r (u), we obtain a cylin-
der with deformation occurring only along the cross secti
Figure 2~a! shows a series of deformed circles with period
to 6. A radially deformed cylinder, as shown in Fig. 2~b!, is
formed by translating the deformed circle of period 6 alo
the z axis. Figure 2~b! uses the same parameters as in Fig
@17#.

The degree of deformation, defined as the ratio of
maximum to the minimum radii,D5r max/r min , is a quan-
tity that can be measured by reflection interference cont
microscopy@18# or atomic force microscopy@19#. We esti-
mate the degree of deformation of an axially symmetric c

FIG. 1. Phase separation and deformation on a radially symm
ric circular cylinder.~a! Plots of order parameterf, curvatureh and
radiusr as a function ofz. ~b! Equilibrium shape of the deforme
cylinder; shades of gray correspond to the order-parameterf.
e
a

.
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inder, for which r 51/H and thusD5@H02(L/k)c#/@H0
2(L/k)d#, as a function ofk andL. The value ofk can be
either obtained by using micropipette methods@20#, or esti-
mated from molecular dynamics simulations@21#. Although

t-

FIG. 2. Phase separation and deformation on an axially symm
ric circular cylinder.~a! Cross sections of deformed cylinder with 3
4, 5 and 6 modes, respectively.~b! Equilibrium shape of a deformed
cylinder with mode 6; shades of gray correspond to the order
rameterf.

FIG. 3. Deformation of the axially symmetric cylinder as a fun
tion of: ~a! Elastic rigidityk for fixed L50.02; circles are numeri-
cal data and the solid line is a fit of quadratic form in 1/k. Inset
shows the deformed cross sections of the cylinder, the inner-m
curve corresponding to the smallestk value.~b! Coupling constant
L for fixed k50.01; circles are numerical data and the solid line
a fit of quadratic form inL. Inset shows the deformed cross se
tions with fixed perimeter, the inner-most curve corresponds to
largestL value.
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difficult to measure directly in experiments,L may be de-
rived from first principles molecular dynamics simulations
in @21# by using Eq.~5!. Figure 3a shows that the deform
tion D has a quadratic form in 1/k. Figure 3~b! indicates
again a quadratic form dependence of the deformation on
coupling constantL. This can be understood by expandin
D in the small deformation limit, whenL!k. In this limit,
c2d andcd remain approximately independent ofL andk,
thusD}c11c2L/k1c3L2/k2 with c1 ,c2 andc3 constants.
Indeed, if we vary bothL and k such thatL/k remains

FIG. 4. Phase separation and deformation on spheres and
~a! Axially symmetric sphere.~b! Azimuthally symmetric sphere
~c! Axially symmetric torus. ~d! Azimuthally symmetric torus.
Shades of gray correspond to different magnitudes of the o
parameterf.
ch

d

s

he

constant, the deformations are virtually identical to those
Fig. 3 ~not shown!.

We also applied this framework to other deformable g
ometries and symmetries, e.g. a sphere and a torus with
propriategi j . Figure 4 shows results for spheres and t
with axial and azimuthal symmetry. The parameters used
the same as in Fig. 1. We observe preferential phase sep
tion similar to the case of cylinders.

To summarize, we have developed a theoretical fram
work in which we obtained exact analytical solutions for t
equilibrium phase distributions and membrane shapes, f
series of geometries including cylinders, spheres, and
This framework allows for an estimate of the degree of d
formation from the coupling strength and the elastic rigid
of the membrane. Since fluid properties are essential
modeling cells and membranes, our model augmented wi
coupling to hydrodynamics will enable the study of realis
biological cells. If the membranes do not exchange m
ecules with their environments, the order parameter is c
served. We conjecture that when the membrane is free f
external forces, the mean curvature is also conserved@22#.
Then the dynamics of phase separation and deformatio
the membrane will follow those of two coupled-conserv
fields @23#.

The order-parameter field considered above need not
scalar density or relative concentration field. If we choo
magnetization~M! or polarization ~P! instead of f, we
would then expect periodic stripes of magnetic and polari
tion domains in regions of different curvature.

We thank R. C. Desai and G. L. Eyink for useful discu
sions. This research is supported in part by the U.S. Dep
ment of Energy under Contract No. W-7405-ENG-36.
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@5# F. Jülicher and R. Lipowsky, Phys. Rev. Lett.70, 2964~1993!.
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